
© 2022 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which  
permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. “This article has been published  

in Journal of Exploratory Research in Pharmacology at https://doi.org/10.14218/JERP.2022.00050 and can also be viewed on the Journal’s website  
at https://www.xiahepublishing.com/journal/jerp ”.

Journal of Exploratory Research in Pharmacology 2022 vol. 7(4)  |  223–233 
DOI: 10.14218/JERP.2022.00050

Review Article

Introduction

Natural products possess extensive pharmacological or biological 

activities that could be the source of drug discovery.1 Compared 
with synthetic small molecules, natural products have the advan-
tage of an abundant molecule skeleton, structural complexity, 
and a high degree of stereochemistry. According to statistics,2,3 
approximately 50% of approved drugs among 1,881 agents over 
nearly four decades from 1981 to 2019 have either natural prod-
ucts or their derivatives. Studying natural products for treating 
diseases in humans has also always won a significant share of 
Nobel Prizes4,5 and many famous drugs have been discovered 
in plants, including artemisinin, taxol, guanfu base A, and vin-
cristine. Even, several natural products have been identified as 
effective in treating severe acute respiratory syndrome coronavi-
rus 2.6,7 Thus, natural products offer the best chance to discover 
novel effective structures to cure human illnesses. However, the 
inherent defects of natural products affect their development into 
clinical drugs, possibly owing to low solubility, low bioavaila-
bility, unacceptable off-target toxicity, and a narrow therapeutic 
window. Therefore, it is still a major challenge to exploit natural 
product-based drug discovery.

Drugs or small molecules are developed to be loaded in quanti-
ties of nanocarriers to improve the therapeutic properties, which 
have shown great success in the field of drug delivery.8,9 The 
benefits of nanodrugs are owing to the range of properties and 

Self-assembled Natural Product-based Carrier-free 
Nanoplatforms for Efficient Bioactivity

Xiao-Qing Xu1, Xiao Xu1, Yun Wang1, Zhong-Rui Li1,2*  and Chao Han1*

1State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, 
China Pharmaceutical University, Nanjing, China; 2Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China

Received: May 26, 2022  |  Revised: July 03, 2022  |  Accepted: August 03, 2022  |  Published: August 22, 2022

Abstract

Natural products featured by an abundant molecule skeleton and structural complexity exhibit extensive pharma-
cological or biological activities. Thus, natural active ingredients are an important source of drug research and de-
velopment. However, the inherent defects, including low solubility, low bioavailability, and unacceptable off-target 
toxicity, affect their development into clinical drugs. Recently, carrier-free supermolecule nanodrugs have attracted 
considerable attention. These nanodrugs are self-assembled by pure drugs mainly through hydrophobicity, hydro-
gen bond, π-π stacking, and electrostatic interaction, which possess a high drug loading capability, enhanced water 
solubility of the drugs, and synergistic therapeutic efficacy. In this review, natural product-based carrier-free nano-
platforms with self-assembly for efficient bioactivity are examined. These self-assembled natural products include 
triterpenoids, alkaloids, flavonoids, and anthraquinones. Moreover, the morphology of the formed nanoplatforms 
can be a nanosphere, nanofiber, nanorod, or fibrillar network, and they can exhibit several bioactivities, such as 
antitumor, anti-inflammatory, immunoregulation, and liver protection. Briefly, we analyze the types and sources, 
formation mechanism, biological activity, and mode of action of nanomedicine, and discuss the future of this field. 
We believe this review would provide a landscape of natural product-based carrier-free nanoplatforms.

Keywords: Natural products; Carrier-free nanoplatforms; Supermolecule self-assem-
bly; Triterpenoid; Alkaloid.
Abbreviations: AA, aristolochic acid; ABBR, alkylated berberine; Asp, aspirin; BA, 
baicalin; BBR, berberine; CA, cinnamic acid; Ce6, chlorin e6; CPT, camptothecin; CST, 
celastrol; CTX, cabazitaxel; DAS, dasatinib; DOX, doxorubicin; DTA, dehydrotram-
etenolic acid; EGCG, epigallocatechin gallate; Erg, ergosterol; GA, glycyrrhizic acid; 
GLA, glycyrrhetinic acid; GRb1, ginsenoside Rb1; GRg1, ginsenoside Rg1; GRo, ginse-
noside Ro; HCPT, 10-hydroxycamptothecin; ICG, indocyanine green; IDM, indometh-
acin; LA, lactobionic acid; LAA, liquidambaric acid; MCA, 3,4,5-methoxycinnamic 
acid; PTX, paclitaxel; PUA, poly (ursolic acid); RHA, retinoic hydroxamic acid; Rhe, 
rhein; RHL, rhamnolipids; SSa, saikosaponin a; UA, ursolic acid; WOG, wogonoside.
*Correspondence to: Chao Han, State Key Laboratory of Natural Medicines, Jiangsu 
Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese 
Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, Chi-
na. ORCID: https://orcid.org/0000-0001-8580-4697. Tel: +86 159-5205-2127, E-mail: 
hanchao@cpu.edu.cn; Zhong-Rui Li, Department of Medicinal Chemistry, School of 
Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, Chi-
na. ORCID: https://orcid.org/0000-0001-6830-4973. Tel: +86 135-9805-4657, E-mail: 
lizhongrui@njmu.edu.cn
How to cite this article: Xu XQ, Xu X, Wang Y, Li ZR, Han C. Self-assembled Natu-
ral Product-based Carrier-free Nanoplatforms for Efficient Bioactivity. J Explor Res 
Pharmacol 2022;7(4):223–233. doi: 10.14218/JERP.2022.00050.

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14218/JERP.2022.00050
https://crossmark.crossref.org/dialog/?doi=10.14218/JERP.2022.00050&domain=pdf&date_stamp=2022-08-18
https://orcid.org/0000-0001-6830-4973
https://orcid.org/0000-0001-8580-4697
https://orcid.org/0000-0001-8580-4697
mailto:hanchao@cpu.edu.cn
https://orcid.org/0000-0001-6830-4973
mailto:lizhongrui@njmu.edu.cn


DOI: 10.14218/JERP.2022.00050  |  Volume 7 Issue 4, December 2022224

Xu X.Q. et al: Natural products-based carrier-free nanoplatformsJ Explor Res Pharmacol

interactions that are particular to the nanoscale structure with a 
size of 1–1,000 nm. Nanotechnology, such as polymer colloids, 
liposomes, micelles, carbon material, and a metal-organic frame-
work, has been widely used in encapsulating natural products to 
increase the bioavailability, targeted delivery, and controlled re-
lease.10,11 Nevertheless, most nanocarriers perhaps have the weak-
nesses of a low drug loading capacity, long-term materials toxicity, 
undesirable immune responses, and nearly all nanocarriers have 
no therapeutic effect. Fortunately, carrier-free supermolecule nan-
odrugs have been exploited in the nanodrug delivery system.12–15 
These nanodrugs are self-assembled by pure drugs without any 
accessories, which are probably formed through non-covalent 
interactions, such as Van der Waals’ force, hydrophobicity, hy-
drogen bond, π-π stacking, and electrostatic interaction. More 
importantly, carrier-free nanodrugs could significantly improve 
the solubility and stability of drugs, and have almost non-toxicity, 
a high drug loading capability, and synergistic therapeutic effi-
cacy. Additionally, carrier-free nanodrugs are deemed as prom-
ising candidates to be the next generation of drug formulations. 
As an emerging field, more and more natural products are being 
reported to form carrier-free nanostructures by self-assembly.16 
Therefore, it would be essential and of great interest to summarize 
and discuss natural product-based carrier-free nanoplatforms with 
self-assembly for efficient bioactivity. In this review, the empha-
sis would focus on the types and sources, formation mechanism, 
biological activity, and mode of action (Fig. 1). Finally, we would 

briefly outline the current existing problems and future develop-
ment of this nanomedicine field.

Natural triterpenoids-based carrier-free nanoplatforms

Natural triterpenoids, widely distributed in nature, contain six 
isoprene units and usually exist in plants and animals in a free, 
ether, ester, or glycoside form.17 Researchers18,19 have recently 
discovered that triterpenoids act as an antitumor, antivirus, liver 
protector, bactericidal, anti-inflammatory, and other physiological 
activities, and some of them have been approved for the treatment 
of clinical conditions. Furthermore, with a unique stereostructure, 
multifunctional groups, and multi chiral centers, triterpenes are in-
creasingly being used to assemble supramolecular gel systems that 
provide therapeutic or drug delivery strategies.20,21

Ursolic acid

Ursolic acid (UA), a pentacyclic triterpenoid, is found in many nat-
ural herbs and edible plants, including Cornus officinalis, Prunella 
vulgaris, and Ligustrum lucidum. UA has the advantages of low 
toxicity and high efficacy, which possesses a wide range of bio-
activities, such as antitumor, anti-metastatic, anti-inflammatory, 
anti-angiogenic, and antidiabetic activities.22 Fan et al.23 designed 

Fig. 1. Representative natural products, the self-assembled nanostructures and bioactivities. 
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a carrier-free, pure nanodrug by self-assembly of UA (Fig. 2a). The 
UA nanoparticles exhibited a spherical shape with a size of 150 
nm, which were formed based on the electrostatic and hydrophobic 
interaction between the UA molecules. More importantly, the UA 
nanoparticles proved to inhibit tumor growth and had the ability of 
liver protection and immunotherapy. Next, aspirin (Asp), a famous 
nonsteroidal anti-inflammatory drug,24 could interact with UA to 
assemble Asp-UA nanoparticles.25,26 As a pH-stimuli responsive 
nanodrug, the Asp-UA nanoparticles could accumulate in the tu-
mor tissues via passive targeting, and release drugs in an acidic 
tumor micro-environment. Thereafter, the Asp-UA nanoparticles 
inhibited adhesion, migration, and invasion of breast cancer cells 
through upregulating the expression of E-cadherin, beta-catenin 
(β-catenin), and PTEN proteins, and downregulating the expres-
sion of integrin α6β1, CD44, MMP-2, COX-2, EGFR, and ERK 
proteins. Likewise, Zhang et al.27 established a “core-shell” co-
assembly carrier-free nanosystem based on UA and epigallocat-
echin gallate (EGCG) for hepatocellular carcinoma synergistic 
treatment. EGCG, the ingredient with antioxidant activity in green 
tea,28 was used as a “shell” to self-polymerize to form a uniform 
layer, which could avoid the degradation of the UA “core”. These 
nanodrugs showed low cytotoxicity, good biosafety, and efficient 
tumor accumulation. More importantly, UA not only led to tumor 
cell death and delivered tumor antigens, but also activated the im-
mune system and boosted APC cell proliferation with EGCG to 
enhance the antitumor effect by the acquired immune cells.

UA could also interact with indocyanine green (ICG) and lac-
tobionic acid (LA) to self-assemble UA-ICG-LA nanoparticles.29 
ICG is the only approved agent used in clinical imaging and detec-
tion,30 and LA is an asialoglycoprotein receptor.31 The UA-ICG-
LA nanodrugs were capable of tumor imaging and specifically 
targeting the tumor tissue. In addition, the UA-ICG-LA nanodrugs 
with near-infrared irradiation displayed enhanced antitumor ef-
fects collaborated with photothermal therapy and photodynamic 
therapy. Furthermore, Jiang et al.32 developed carrier-free nan-

odrugs for co-delivery of UA and chemotherapeutic doxorubicin 
(DOX). The coassembled dual nanodrugs exhibited a spherical 
shape with a size of 109 nm and a pH-triggered drug release man-
ner. Additionally, UA could sensitize DOX for the enhanced anti-
tumor effects and therefore significantly produced the synergistic 
treatment of human breast cancer BT474 cells. Likewise, Bag et 
al.33 studied the self-assembly of UA in different liquids in detail. 
They discovered that UA could self-assemble into nanostructures 
with vesicles, tubes, fibers, and flowers in an organic and aqueous 
organic solvent. UA self-assemblies could be utilized for loading 
fluorophores and DOX. Next, a “self-contained bioactive nanocar-
rier” system based on UA and paclitaxel (PTX) was developed.34 
UA interacted with PTX to form a high drug loading nanoparticle 
via a hydrophobic interaction and hydrogen bonding. UA and PTX 
could significantly improve the synergistic therapeutic efficacy, 
while the nanodrugs were capable of eliminating the toxic side ef-
fects and risk of liver damage induced by the chemotherapy agents 
via the upregulation of key antioxidant proteins. Guo et al.35 also 
developed a carrier-free theranostic nanodrug by the self-assembly 
of UA, PTX, and ICG on account of electrostatic, hydrophobic, 
and π-π stacking interactions. The UA-PTX-ICG nanoparticles 
exhibited long-term near-infrared fluorescence imaging, effec-
tive passive tumor targeting, and synergistic antitumor effect by 
chemotherapy, photodynamic therapy, and photothermal therapy. 
Finally, poly(ursolic acid) (PUA) was synthesized through the 
polycondensation of the hydroxyl group and carboxyl group of 
UA.36 PUA could self-assemble into the nanoparticles with PTX. 
The assembled nanoparticles possessed prolonged blood circula-
tion, enhanced tumor targeting, and significant antitumor efficacy 
against colorectal cancer CT26 cells.

Glycyrrhizic acid

Glycyrrhizic acid (GA), separated from Glycyrrhiza uralensis, G. 

Fig. 2. Self-assembly and antibacterial activity of baicalin-berberine and wogonoside-berberine complexes. (a) Ursolic acid nanodrug formed by self-
assembly for tumor immune therapy (Adapted from Ref. 23 with permission. Copyright © 2018 The American Chemical Society); (b) Formation mechanism 
by self-assembly of liquidambaric acid (Adapted from Ref. 53 with permission. Copyright © 2020 The Elsevier Publishing Group); (c) Self-assembling process 
of baicalin-berberine (BA-BBR) and wogonoside-berberine (WOG-BBR) and their antibacterial activity (Adapted from Ref. 66 with permission Copyright © 
2019 The American Chemical Society); (d) Possible self-assembly diagram of rhein gel (Adapted from Ref. 87 with permission. Copyright © 2019 Springer 
Nature Publishing Group). UA, ursolic acid; BA, baicalin; BA-BBR, baicalin-berberine; BBR, berberine; WOG, wogonoside; WOG-BBR, wogonoside-berberine. 
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inflate, or G. glabra, is a triterpene saponin, which exhibits anti-in-
flammatory, antitumor, and other extensive biological activities.37 
GA consists of a hydrophilic di-glucuronic residue and a hydro-
phobic triterpenoid aglycon (glycyrrhetinic acid: GLA). Such an 
amphiphilic structure prompted GA to have a good self-assembly 
capability.38 The GA molecules were forecasted to form stable 
aggregates with a size of about 10 nm through the simulation of 
molecular dynamics.39 GA aggregation could also interact with 
the PTX molecules at a ratio of 3:1. Next, spherical micelles were 
observed in the GA aqueous solution with modest anisotropy.40 
The addition of metal ions affected the minimal micelle growth. 
In addition, Zhao et al.41 found GA formed an injectable low-mo-
lecular-weight hydrogel with nanocluster morphology in the aque-
ous solution. This GA hydrogel selectively inhibited the growth 
of gram-positive Staphylococcus aureus and had good hemocom-
patibility and biocompatibility with mammalian cells. GA could 
assemble nanomicelles with baicalein to enhance the solubility of 
baicalein in the aqueous solution by more than 4,500 times.42 The 
nanomicelles had a sustained release effect of baicalein, which was 
modulated by changing pH.

In terms of chemical structure, GLA was the triterpenoid agly-
con of GA. GLA had a rigid, pentacyclic triterpenoid backbone 
with hydroxyl and carboxyl groups, and it could self-assemble 
thermoreversible gels with spherical and flower-like shapes con-
sisting of fibrillar networks.43 Wu et al.44 considered GLA to form 
a hydrogel with a dipole-dipole interaction as the main driving 
force. The GLA hydrogel showed the properties of selective dye 
adsorption and sustainable release, which could be used in dye 
waste removal as an environmentally-friendly functional material 
and controlled drug delivery system. GLA interacted with PTX 
and oleanolic acid, a triterpene for treating hepatitis, to form a 
natural nanomedicine-cum-carrier delivery nanoplatform.45 The 
nanoplatform had synergistic effects on the tumor treatment and 
an excellent hepatoprotective effect to reduce liver damage caused 
by PTX.

Ginsenosides

Ginseng is one of the most popular herbs worldwide and has been 
demonstrated to treat hypertension, stress, and different neuro-
logical disorders.46 Ginsenoside Ro (GRo), the active ingredient 
of ginseng, could markedly increase the solubility of saikosapo-
nin a (SSa), derived from Bupleurum chinense.47 At low con-
centrations, GRo preferentially self-assembled into the vesicles 
to absorb SSa into themselves. At high concentrations, SSa first 
self-aggregated and then interacted with GRo to form mixed 
vesicles. Next, interactions between ginsenoside Rb1 and Rg1 
(GRb1 and GRg1) with SSa were also explored.48 GRb1 could 
disperse the SSa solid in water, while no significant interaction 
was obtained between GRg1 and SSa. Different from GRo, GRb1 
and GRg1 formed spherical micelles in the aqueous medium. 
Compared to GRg1, GRb1 with greater sugar groups produced 
more binding sites with SSa, thus leading to stronger interaction. 
In order to expand the application of the GRo vesicles, differ-
ent drug additives were examined in terms of their effect on the 
Ro vesicles’ solubilization.49 The hydrophobic molecules lack-
ing hydrophilic groups (such as quercetin and coumarin) were 
mainly inserted in the hydrophobic layer of the GRo vesicle, 
while the amphipathic molecules, including the hydrophilic and 
hydrophobic groups (such as baicalin and SSa) were mainly lo-
cated on the palisade layer of the GRo vesicle. These results were 
of great significance for the further development and application 
of ginsenosides.

Other triterpenoids

Celastrol (CST), a pentacyclic triterpenoid, exists in Tripterygium 
wilfordii for treatment of cancer. CST could interact with DOX to 
self-assemble into carrier-free nanoparticles for a synergistic anti-
tumor.50 CST-DOX nanoparticles could inhibit a P-gp expression 
to overcome DOX resistance through restraining NF-κB and ac-
tivating heat shock factor 1. Thereafter, nanoparticles produced a 
synergistic combination chemotherapy via the ROS/JNK signaling 
pathway in the DOX resistant cells. Dai et al.51 adopted the dissi-
pative particle dynamics simulations method to study the micelli-
zation behavior of platycodin, which was derived from Platycodon 
grandiflorum. Numerous platycodin self-assemblies with spheri-
cal, ellipse, oblate, and multilamellar vesicles were observed, 
which had the potential to be used as biocarriers for the drug 
delivery. Poricoic acid A belonging to tricyclic triterpenoids and 
dehydrotrametenolic acid (DTA) belonging to tetracyclic triterpe-
noids were isolated in Poria cocos, and could self-assemble into a 
low molecular weight gelator, respectively.52–54 DTA nanoparticles 
were also assembled based on intermolecular hydrogen bonding 
and could penetrate the gastrointestinal tract through an apical 
sodium-dependent bile transporter-based intestinal transport sys-
tem for effective disease treatment. Liquidambaric acid (LAA, also 
known as betulonic acid) is isolated from Liquidambar formosana 
and possesses many biological activities.55 Zhi et al.53 prepared in-
jectable LAA gel scaffolds loaded with DOX (Fig. 2b). LAA-DOX 
gel not only showed controlled gelation, sustained drug release, 
and less toxic side effects, but also achieved the synergistic treat-
ment of tumors. LAA could also be loaded with PTX to assemble 
supramolecular nanoparticles via a hydrophobic interaction and 
hydrogen bond.56 Except for antitumor activity, the LAA-PTX 
nanoparticles exhibited a series of advantages, such as excellent 
water solubility, efficient tumor targeting, high bioavailability, low 
toxicity, and biological safety. In addition, ibuprofen, the anti-in-
flammatory drug, was selected to be loaded on the LAA gel.57 This 
gel could enhance the anti-inflammatory activity of ibuprofen by 
about two-thirds and its treatment even achieved about 140% of 
the OTC drugs. Hence, LAA gel provided a useful tool for a drug 
delivery strategy with enhanced anti-inflammatory activity. Natu-
ral sterols are a kind of important active ingredient, which exhibit 
the self-assembly ability to deliver drugs.21,58 Ergosterol (Erg), 
β-sitosterol, and stigmasterol, the representative sterols, could 
self-assemble into carrier-free nanoparticles, respectively.52,54,59 
The photosensitizer chlorin e6 (Ce6) was loaded on Erg to assem-
ble Erg-Ce6 nanoparticles through π-π stacking and hydrophobic 
interactions for a significantly combined antitumor. The Erg-Ce6 
nanoparticles improved the water solubility and stability of Ce6 
and possessed an excellent tumor targeting ability. In addition, the 
Erg-Ce6 nanoparticles induced reactive oxygen species generation 
due to the photodynamic therapy of Ce6 by promoting type I pho-
toreactions, which resulted in a significant anticancer efficiency in 
vitro and in vivo. Natural sterols with better biocompatibility and 
biodegradability were expected to develop into nanomaterials for 
the drug delivery in the treatment of human illness.

Natural alkaloids-based carrier-free nanoplatforms

Natural alkaloids60,61 are important nitrogen-based compounds, 
which are widely distributed in a large variety of plants with 
different genera, such as Taxux, Picea, Ephedra, Cephalotaxus, 
and Stephania. Alkaloids contain multiple biological activities, 
including antitumor, anti-inflammatory, antioxidant, and antimi-
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crobial effects, thus making them an ideal source of drug dis-
covery.

Berberine

Berberine (BBR) has been widely used clinically to treat bacte-
rial diarrhea, which exists in the Chinese herb Coptidis rhizoma.62 
Lei et al.63–65 found compound precipitation occurred when C. 
rhizoma was simultaneously decocted with another Chinese herb 
Scutellaria baicalensis. This compound precipitation was the com-
plex of the intermolecular interaction between the BBR from C. 
rhizoma and baicalin (BA) from S. baicalensis, and exhibited a 
neuroprotective effect in cobalt chloride-induced PC12 cells. Fur-
thermore, they discovered that BBR could self-assemble with BA 
to form carrier-free nanoparticles, and wogonoside (WOG), anoth-
er active compound from S. baicalensis, assembled into nanofibers 
with BBR.66 The BBR-BA nanoparticles and BBR-WOG nanofib-
ers were formed through electrostatic and hydrophobic interac-
tions. Compared with BBR, the BBR-BA nanoparticles exhibited 
enhanced bacteriostatic activity against Staphylococcus aureus, 
whereas the BBR-WOG nanofibers showed a weaker effect (Fig. 
2c). The reason was that the BBR-BA nanoparticles with the hy-
drophilic groups toward the outside showed a stronger affinity to 
the bacteria population, thereby resulting in easily permeating into 
the biofilm. Next, the BBR-BA nanoparticles could also be used to 
treat diarrhea predominant irritable bowel syndrome.67 The syn-
ergistic effect of the nanoparticles through microbiota–gut–brain 
axis was better rather than the simple mixing of BBR and BA, 
and the mechanism was concerned with the brain-gut peptides, 
immune inflammation, and intestinal flora. Moreover, Huang et 
al.68 assembled the BBR nanoparticles with cinnamic acid (CA), 
a representative component from Cinnamomum cassia. The BBR 
molecule interacted with CA to form butterfly-like one-dimension-
al units, and then the units assembled three-dimensional spherical 
particles. The BBR-CA nanostructures showed enhanced inhibi-
tory activity on multidrug-resistant S. aureus. 3,4,5-Methoxycin-
namic acid (MCA) is the derivative of CA, which is extracted from 
Polygala tenuifolia. MCA could also self-assemble with BBR to 
form nanoparticles.69 The formation of the BBR-MCA nanopar-
ticles was mainly based on the π-π stacking interactions and in-
termolecular hydrogen bonds. More importantly, the BBR-MCA 
nanoparticles possessed inhibiting multidrug-resistant S. aureus 
through the binding on the surface of bacteria. Rhein (Rhe) is the 
active compound from Rheum palmatum and has an anthraquinone 
skeleton. Rhe could interact with BBR to assemble nanoparticles 
with Rhe acting as a stacked backbone and BBR inserting into 
it.70 The antimicrobial activity against S. aureus of the BBR-Rhe 
nanoparticles significantly increased on account of the synergis-
tic bacteriostasis of BBR and Rhe. The assembled nanostructures 
resulted in the death of the bacteria by adhering to the surface of 
the bacteria and increasing the drug concentration around the bac-
teria. Aristolochic acid (AA) is an active ingredient with a phen-
anthrene skeleton and exists in Aristolochia debilis. AA can cause 
a series of side effects, such as liver cancer, AA nephropathy, and 
acute kidney injury, which would seriously affect the use of herbs 
containing AA.71 Fortunately, the BBR-based self-assemblies with 
AA could neutralize the acute nephrotoxicity of AA.72 The BBR-
AA self-assemblies with linear heterogenous supramolecules were 
formed based on the electrostatic attraction and π-π stacking. The 
BBR-AA supramolecules could block the toxic site of AA by ac-
tivating the immune system and tumorigenesis-related pathways. 
These findings could offer a new strategy to eliminate the toxicity 
problems of herbs containing AA. Additionally, Shen et al.73 syn-

thesized a carrier-free supramolecule containing alkylated BBR 
(ABBR) and rhamnolipids (RHL) against Helicobacter pylori. 
The ABBR-RHL supramolecules with a negative charge and size 
of about 160 nm were derived by the electrostatic and hydropho-
bic interactions. More importantly, the assembled supramolecules 
could eradicate the H. pylori biofilms by breaking the extracellu-
lar polymeric substances. Moreover, the supramolecules inhibited 
adherence of the H. pylori to restrain the ability of the biofilm re-
formation, which could provide a foundation for treating biofilm-
related infections.

Paclitaxel

Paclitaxel (PTX), a microtubule-interfering chemotherapy agent, 
has been widely employed in antitumors with an extensive spec-
trum, such as lung, breast, and gastric cancer.74 Pei et al.75 synthe-
sized a glutathione-responsive PTX dimer (PTX-S-PTX) and then 
assembled the PTX-S-PTX nanovesicles. The nanovesicles showed 
a high drug loading, rapid GSH responsive release, and enhanced 
cancer theranostic by encapsulating the fluorescent molecule ICG. 
BBR with a positive charge could selectively target mitochondria 
to kill cancer cells, of which the mechanism was different from 
PTX. Therefore, the GSH-responsible dual drug conjugate (BBR-
S-PTX) was obtained based on BBR and PTX through a disulfide 
bond.76 Similarly, BBR-S-PTX could assemble into nanoparticles 
with a size of 165 nm, which was formed by the hydrophobic and 
π-π stacking interactions. The induced assembled nanoparticles 
enhanced the apoptosis of the cancer cells by targeting mitochon-
dria and also exhibited better antimicrobial activity against S. au-
reus and E. coli. Zhang et al.77 also prepared carrier-free nanocrys-
tal aggregates based on PTX and indomethacin (IDM; a COX-2 
inhibitor). PTX-IDM assemblies with a “brick-cement” architec-
ture possessed synergetic antitumor effects of immunotherapy and 
chemotherapy. Cabazitaxel (CTX), the PTX derivative, could in-
teract with dasatinib (DAS) to form nanoassemblies.78 DAS with 
amphiphilicity drove the nano-assembly of the CTX-DAS nano-
particles without any exogenous excipients. The nano-assemblies 
exhibited 100% drug loading and aggregation-induced emission 
at 422 nm for tumor diagnosis. More importantly, the treatment of 
cancer with the CTX-DAS nanoparticles was significantly syner-
getic. This approach lays the groundwork for the combinatorial use 
of multiple drugs with different mechanisms of action.

Camptothecin and doxorubicin

Camptothecin (CPT), an isoquinoline alkaloid, is separated from 
Camptotheca acuminate. CPT is a broad-spectrum antitumor 
agent, which inhibits the DNA topoisomerase I enzyme to lead to 
DNA double-stranded breaks.79 CPT was used to construct self-
defensive nanostructures with the C-D-E rings of the planar con-
struction.80 10-Hydroxycamptothecin (HCPT) with modification 
of hydroxyl on C-10 and carboxylic camptothecin with esterifica-
tion of C-20 could also self-assemble into nanoparticles. However, 
due to the different molecular structures, CPT and HCPT were na-
noribbons, and carboxylic CPT nanostructures were cylindric na-
norods. Moreover, CPT-based assemblies could protect CPT from 
hydrolysis to enhance tumor therapy. Liang et al.81,82 prepared car-
rier-free HCPT-DOX nanoparticles formulated by simple physical 
self-assembling HTCP and DOX. The HCPT uptake was improved 
by the CPT-DOX nanoparticles with a spherical morphology and 
positive charge. As expected, the nanoparticles exhibited enhanced 
a synergistic antitumor against the cancer cells. On the other hand, 
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the HCPT-DOX nanoparticles enhanced the antitumor in drug-re-
sistant cancer cells. Nanosizing of HCPT and DOX showed a syn-
ergistic effect to improve the intracellular drug retention through 
inhibiting the P-gp efflux. Curcumin is a diarylheptanoid that exists 
in Curcuma longa, of which the structure is in enol-keto tautomer-
ic equilibria with different chemical environments.83 To achieve a 
better-targeted drug delivery, carrier-free nanostructures with self-
assembling curcumin and CPT derivatives were constructed based 
on the molecular structures.84 These nanoparticles with a stabilized 
size of 100 nm showed changeable surface charges of −10 mV 
with pH=7.4 and +40 mV in acidic environments. Additionally, 
the assembled nanoparticles showed the synergetic treatment of 
colorectal cancer with better lung and gallbladder targeting and 
macrophage-clearance escape. Likewise, Li et al.85 synthesized 
a DOX dimer via a pH-triggered carbamate linker and then pre-
pared carrier-free DOX conjugated nanoparticles. The conjugated 
nanoparticles exhibited a concentration-dependent acid-responsive 
drug release and enhanced antitumor efficacy, which provided a 
promising method for overcoming the multidrug resistance of the 
cancer cells and prevented tumor recurrence. In order to improve 
tumor drug delivery, a simple nanotransformer (DTIG) was uti-
lized by assembling DOX, tannic acid, and ICG.86 DTIG with 
hydrophilic particles exhibited prolonged blood circulation time, 
while DTIG became hydrophobic particles to be efficiently endo-
cytosed by the tumor cells in the acidic micro-environment. These 
efficient instantaneous transformations promoted the lysosome 
escape of the drug and drugs release. Therefore, DTIG provided 
some references to the drug delivery process for cancer treatment.

Other natural product-based carrier-free nanoplatforms

Zheng et al.87 successfully prepared rhein hydrogels through in-
termolecular π-π interactions and hydrogen bonds (Fig. 2d). Rhein 
hydrogels with a nanofiber network structure exerted better anti-
neuroinflammation. Furthermore, the hydrogels could improve 
an intracellular drug uptake by binding and recognizing toll-like 
receptor 4, and thereby achieve optimal anti-inflammation by in-
hibiting a TLR4/NFκB signaling pathway. Moreover, Liu et al.88 
obtained robust nanoparticles by efficiently assembling ferric ion 
(Fe3+) and luteolin, a natural flavonoid molecule. These nanoparti-
cles could notably improve the solubility and stability of luteolin. 
In addition, the assembled nanoparticles broadened the absorp-
tion spectrum to the near-infrared region to produce a supramo-
lecular photothermal effect, and the coordination assembly greatly 
enhanced the treatment of cancer through chemotherapeutic and 
photothermal effects. Retinoic hydroxamic acid (RHA) contained 
a hydrophobic all-trans retinoic acid backbone and a hydrosoluble 
hydroxamic group, of which the amphiphilic groups could induce 
the formation of nanoparticles by self-assembly.89 Consequently, 
the RHA nanoparticles could result in tumor cell cycle arrest and 
apoptosis through inhibiting histone deacetylase and activating 
retinoic acid receptors. Thus, the RHA nanoparticles exhibited 
long-term anticancer effects with low toxicity, which could be a 
promising drug for melanoma therapy.

Future directions

In the field of nanobiology, natural product-based carrier-free 
nanoplatforms with self-assembly offer significant possibilities 
for drug research and development. The assembled nanodrugs 
have been extensively applied in targeted therapy, synergistic 

treatment, and theranostics. Their significant advantages include 
simple and “green” preparation methods, a high drug loading ca-
pacity, efficient accumulation of drugs, and effective co-delivery 
behavior, making them promising nanomedicine as a treatment 
strategy. Nevertheless, some drawbacks and challenges of car-
rier-free nanoplatforms still need to be solved. Self-assembled 
nanodrugs are slightly unstable, and it would be essential to em-
bellish stabilizers on the surface of the nanodrugs to enhance the 
stability. In addition, the formation mechanism is still unclear. 
As such, it is confusing which kinds of natural products could 
self-assemble, and this should require preliminary experiments 
and lack basic empirical conclusions. In particular, it is difficult 
to precisely control the ratio of the natural products during self-
assembly. Finally, the immunity function limited the therapeutic 
effect of the carrier-free nanodrugs. Thus, this is still a challenge 
for the research and development of natural product-based carri-
er-free nanoparticles.

Conclusions

In this review, we examined natural product-based carrier-free nan-
oplatforms with self-assembly for efficient bioactivity (Table 1 and 
Fig. 3).23,25-27,29,32-35,39,41-45,47–50,52–54,56-59,63–66,68-70,72,77,78,81,82,84,86-
88 Triterpenoids with a rigid skeleton structure and high degree 
of stereochemistry could self-assemble into organogels by them-
selves. These organogels could be formed into a nanosphere, 
nanofiber, nanorod, or fibrillar network through hydrophobicity, 
π-π stacking, hydrogen bond, and electrostatic interaction. Fur-
thermore, the gels could be used to deliver drugs or fluorescent 
molecules, which would exhibit various physiological activities, 
such as antitumor, anti-inflammatory, immunoregulation, and liver 
protection. Berberine was an isoquinoline alkaloid with a positive 
charge, and thus it could interact with natural products containing 
the carboxyl group. Berberine-based nanostructures were mainly 
governed by electrostatic and hydrophobic interactions, and dis-
played good bacteriostatic activity. Next, the three clinical antican-
cer drugs (doxorubicin, paclitaxel, and 10-hydroxycamptothecin) 
could also self-assemble into nanoparticles with other small mol-
ecules mainly through hydrophobic interactions, and exhibit en-
hanced treatment of cancer. Therefore, this review provided a ref-
erence for the design of self-assemblies between natural products.
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Table 1.  Natural products-based carrier-free nanoplatforms with self-assembly

Molecule 1 Molecule 2 Morphology Interaction force of self-assembly Bioactivity References
Ursolic acid – Nanosphere Hydrophobic interactions/

Hydrogen bond
Antitumor 23

Aspirin Nanosphere Antitumor 
metastasis

25,26

Epigallocatechin gallate Nanosphere Antitumor 27
Indocyanine green and 
lactobionic acid

Nanosphere π-π stacking/hydrophobic 
interaction/electrostatic 
interaction

Antitumor 29

Doxorubicin Nanosphere Antitumor 32,33
Paclitaxel Nanosphere Antitumor 34,35

Glycyrrhizic acid – Nanosphere Hydrophobic interactions/
Hydrogen bond

Antibacterial 
activity

39,41

Baicalein Nanosphere – 42
Glycyrrhetinic acid – Nanogels with 

fibrillar networks
– 43,44

Oleanolic acid and paclitaxel Nanosphere Antitumor 45
Ginsenoside Ro Saikosaponin a Nanosphere Hydrogen bond/

Dipolar interaction
– 47–49

Celastrol Doxorubicin Nanosphere Hydrophobic interactions/
Electrostatic adherence/
π-π stacking

Antitumor 50

Dehydrotrametenolic acid Paclitaxel Nanosphere Hydrogen bond/π-π stacking Antitumor 52–54
Liquidambaric acid Paclitaxel or doxorubicin Network 

nanofiber
Antitumor 56,57

Ibuprofen Network 
nanofiber

Anti-
inflammatory

58

Ergosterol Chlorin e6 Nanorod Antitumor 52,54,59
Berberine Baicalin Nanosphere Electrostatic interaction/

Hydrophobic interaction/
π-π stacking

Antibacterial 
activity

63–66

Wogonoside Nanofiber Antibacterial 
activity

66

Cinnamic acid Nanosphere Antibacterial 
activity

68

3,4,5-Methoxycinnamic acid Nanosphere Antibacterial 
activity

69

Rhein Nanosphere Antibacterial 
activity

70

Aristolochic acid Linear 
Supramolecule

Neutralizing 
nephrotoxicity

72

Paclitaxel Indomethacin Nanocrystal Hydrophobic interaction/
π-π stacking

Antitumor 77

Cabazitaxel Dasatinib Nanosphere Hydrogen bond/π-π stacking/
van der Waals interaction

Antitumor 78

10-Hydroxycamptothecin Doxorubicin Nanorod Hydrophobic interaction/
π-π stacking

Antitumor 81,82

Camptothecin Curcumin Nanosphere Hydrophobic interaction/
Hydrogen bond/π-π stacking

Antitumor 84

Doxorubicin Indocyanine green 
and tannic acid

Nanosphere π-π stacking/Electronic 
interaction

Antitumor 86

Rhein – Nanofiber π-π stacking/Hydrogen bond Anti-
inflammatory

87

Luteolin Ferric ion Nanosphere Coordinationinteraction/
van der Waals interaction

Antitumor 88

– Not applicable.
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